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ABSTRACT 

    

The implementation of machine learning (ML) leads to the capability of identifying the non-

linear relationship of input and output data. The growing availability and frequency of data 

collection has resulted in the widespread implementation of ML techniques for predictive 

modelling. The SmartOpsTM approach aims at providing ‘early warning’ in feedwater 

variations and optimizing the cleaning schedules using ML. This study was conducted at a 

water treatment plant, situated beside a main industrial plant in Malaysia. Taking the source 

from the pond water, the treatment plant is equipped with ultrafiltration (UF) and reverse 

osmosis (RO) membranes, and the product water was sent to the main plant for manufacturing 

purpose. The SmartOpsTM model outperforms other ML model in the prediction of pond water 

quality. The SmartOpsTM model shows relatively high r2 values at 0.97 in the prediction of the 

conductivity as compared to other ML model (r2 = 0.80). The process optimization using the 

SmartOpsTM is expected to save and minimize the operational costs, which include the 

chemical and electrical consumption of the treatment plant. The methodology offers a great 

potential for implementation in the operations of treatment plant, which could improve energy 

consumption and hence, making the plant more capable and optimized over time.   

 
 

 I. INTRODUCTION    

  

Membrane processes have been widely used in the water treatment industry for decades. 

However, membrane fouling is a significant barrier which could limit the efficiency of reverse 

osmosis (RO) process. Differential pressure (DP), transmembrane pressure (TMP), permeate 

flowrate/flux and salt rejection could be used to monitor RO membrane performance. There 

are several factors which could affect the membrane performance and these include feed water 

characteristics, operating parameters and membrane properties [1]. There are different 

approaches in the analysis of membrane performance and these include physics-based, data 

driven and hybrid models [2]. In physics-based model for RO membrane, solution-diffusion 

transport mechanism described using Fick’s law, osmotic pressure in terms of Van’t Hoff or 

Pitzer equations and concentration polarization model based on film theory model could be 

employed as physical models [3]. However, it is challenging to predict the whole systems using 

classical mathematical models due to the complexity of membrane and fouling processes. 

Hence, it is crucial to explore other advanced methods to address the limitations of classical 

models for the predictions of membrane process performance. 

 



Data-driven and predictive modelling have attracted a lot of attention in the water treatment 

industry in the recent years due the shortcomings of physics-based models. The higher 

frequency and availability of data collection has resulted in the broader implementations of 

machine learning (ML) techniques in predictive modelling. ML could be denoted as the use of 

algorithms to learn from data, obtain hidden knowledge and make predictions in the related 

field. In recent years, there is also a growing number of studies of the applications of ML in 

the field of water treatment for (1) optimization of the operation of water treatment plant and 

(2) evaluating the effect of changing feed water quality on the capacity and efficiency of 

treatment [4].  

 

Supervised ML is categorized under ML and artificial intelligence (AI) and it is defined by the 

use of labeled datasets to train algorithms in order to classify data and predict outcomes 

accurately. Artificial neural networks (ANNs) are one of the most commonly used supervised 

ML algorithm in the field of membrane applications [5], [6].  In a recent study by Odabaşı et 

al., ANNs were used to predict pressure difference across the membrane and it was found to 

outperform random forest and multiple linear regression models [1]. Roehl et al. has used ANN 

models to quantify the cause of membrane fouling in the first stage of a full-scale RO system 

[7]. The simulated model run has indicated that adjustments of chlorine dosing following 

incoming foulant concentrations could reduce fouling rate. 

 

Random forest is one of the most common tree-ensemble algorithms for supervised ML 

problems. The random forest model is gaining more attention due to its high accuracy, 

robustness against outliers and the ability for generalization. Other than these models, there are 

other ML models which were employed for the RO process, for example, support vector 

regression, gradient boosting tree model, fuzzy logic, and genetic programming [8]. 

 

SmartOpsTM is an integrated digital solution for asset management, plant performance, 

predictive maintenance and remote monitoring and control. The key benefits of SmartOpsTM 

include (1) early detection of deteriorating membrane performance and feedwater variations 

using ML, (2) access real time data for trending and reporting of key performance indicators, 

(3) predict the cleaning schedule of membranes and (4) operation optimization to minimize 

operational costs. 

 

As the influent water quality could pose a large impact on the operating conditions and cleaning 

frequency, water quality prediction is essential in water treatment plant management. 

Currently, plant operators are using sensors/probes to monitor the changes in feed water 

quality, but they are unable to do predictions on this parameter. Nevertheless, these monitoring 

data serve as a basis for data-driven models for predictive analysis. Water quality predictions 

can provide a framework for the plant operators to act as a ‘preemptive warning’ so that the 

most appropriate counter measures could be implemented.  

 

Data-driven modelling techniques take advantages of large datasets obtained from the 

monitoring tools with advanced statistical analysis. Studies have shown the use of various ML 

techniques, including supervised machine learning in environmental studies associated to water 

treatment plant and membrane technology [9] [10] [11]. Various supervised ML models are 

used to train the data in this study and physics-based models are used to keep the prediction 

within physical reality. The objective of this study is to show the application of SmartOpsTM in 

predicting the variations in source water quality and optimization of process parameters so that 

the operational costs could be minimized.   

  



 II. RESEARCH CONDUCTED 

  

2.1 Treatment plant feed water and process 
 

The study was conducted in a water treatment plant equipped with ultrafiltration (UF) and RO 

InfinityTM (ROITM), located at Taiping, Malaysia. The process flow diagram (PFD) of the 

treatment plant is shown in Figure 1. The treatment plant is situated beside a main industrial 

plant and it uses the surface pond water as the source. The plant is equipped with four trains of 

conventional UF as the pre-treatment and integrated with Gradiant’s RO InfinityTM process 

(four trains) to produce RO permeate with low TDS (<30 mg/L). With ROI technology, the 

water recovery could be increased and RO membrane lifetime could be prolonged. In this 

study, there are only three UF and ROI trains in operation. Feed water from the open pond 

water intake is fed to the UF to remove any suspended impurity before treatment with ROI. 

Sodium bisulfite (SBS) and anti-scalant are dosed prior to ROI to protect the membranes from 

fouling and scaling. The product water is sent to the main plant for manufacturing purposes. 

The treatment plant is equipped with full supervisory control and data acquisition (SCADA) 

system and feed water quality are recorded in real time. The RO permeate lines are equipped 

with conductivity meters to monitor the permeate quality being generated. The measured feed 

water parameters were summarized in Table 1. 

Table 1: Water quality of water source (pond water) 

Parameter  Unit  Results  

pH @ 25⁰C - 7.84 

Conductivity  µS/cm 633 

Turbidity NTU 3.29 

Total dissolved solids 

(TDS)  

mg/L 317 

Nitrate, NO3 
- mg/L 5.31 

Phosphate, PO4 
3- mg/L 17.64 

 

 

Figure 1: Process flow diagram for the treatment plant 

2.2 SmartOpsTM digital solutions  
 

Figure 2 shows the process workflow for SmartOpsTM digital solutions. In summary, SCADA 

collects data from the monitoring sensors in the treatment plant. The data is pre-processed and 

cleaned in preparation to train the ML model. The data is separated into training and testing set 



for the evaluation of the ML model. The trained model is then used for predictions and the 

setpoints are changed based on the optimized model.  

 

 

Figure 2: Process workflow for SmartOpsTM digital solutions 

2.3 Model design 

 

Influent conductivity is one of the most important variables in the membrane process as it 

affects the permeate flux and rejections [12]. The conductivity of the source water is susceptible 

to change, depending on weather and the surrounding conditions. Due to this reason, the current 

work focuses on the predictive analysis of feed conductivity (from an open pond water intake) 

using weather data and the surrounding conditions as the inputs. Figure 3 presents the flowchart 

of the model design for the data-driven modelling. It started with data collection and followed 

by variable characterization and correlation. After the inputs to the model are fixed, the data is 

split into training, validation and testing datasets. Various models are tested in order to select 

the best model with highest r2 value.  

 

 



 

Figure 3: Model design structure diagram. 

III. RESULTS AND DISCUSSIONS   

 

Figure 4 shows the conductivity of the open pond water intake (feed water source) of the pilot 

plant. To determine the variables which pose significant effect on the influent conductivity, a 

correlation study was carried out to reduce the dimensionality of the model. As shown in Table 

2, conductivity is negatively correlated to precipitate and strongly correlated to temperature. 

Hence, these variables were selected as the input for the machine learning model which will be 

described in the following sections. 

 

Table 2: Correlation matrix  

 Precipitate Wind 

speed 

Air 

pressure 

Temperature Conductivity 

Precipitate 1 -0.12 -0.15 -0.38 -0.47 

Wind speed -0.12 1 0.022 0.088 0.05 

Air pressure -0.15 0.022 1 0.14 0.3 

Temperature -0.38 0.088 0.14 1 0.75 

Conductivity -0.47 0.05 0.3 0.75 1 

 

 



 

Figure 4: Conductivity of open pond water intake. 

Supervised ML uses data set as the training set to teach models to provide the desired output. 

The training data set should contain the correct inputs and outputs, so that the model could 

learn over time. Several supervised ML models were compared and the best model was selected 

as the SmartOps model. As shown in Figure 5(a), SmartOps model demonstrates higher r2 value 

in the prediction of influent water conductivity in comparison to other ML model. This result 

indicates that the SmartOps model is promising in the predictive modelling of feed water 

quality. By having the future trend of the feed water quality and process optimization based on 

the SmartOps model, plant operators could have implemented more effective countermeasures, 

such as optimizing the chemical dosage in order to operate the plant in its optimal conditions 

without compromising production. 
 

(a) 

 
R2 = 0.97 

(b) 

 
R2 = 0.80 

Figure 5: Prediction using (a) SmartOps model and (b) other ML model. 

The energy consumption of the treatment plant was analyzed and it is shown in Figure 6. With 

SmartOpsTM digital solutions, the energy consumption of the treatment plant is expected to 

reduce and the results will be presented during the conference. 

 



 

Figure 6. Energy consumption of the treatment plant. 

IV. CONCLUSIONS  

This study proposes the use of supervised machine learning model for the feed water quality 

prediction and optimization of process parameters using SmartOpsTM in a water treatment plant. 

The predictive ability of the SmartOpsTM model is promising with the r2 values at ~0.9. With 

the SmartOpsTM prediction model, chemicals and manpower for operation/cleaning could be 

better prepared to minimize the logistic cost and unexpected plant downtime. The SmartOpsTM 

operation gives flexibility to operators in running the plant more efficiently and they could 

perform more proactively in the preventive measures.  
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